
Symbolically Computing Most-Precise Abstract

Operations for Shape Analysis?

G. Yorsh1??, T. Reps2, and M. Sagiv1

1 School of Comp. Sci., Tel-Aviv Univ., {gretay, msagiv}@post.tau.ac.il
2 Comp. Sci. Dept., Univ. of Wisconsin, reps@cs.wisc.edu

Abstract. Shape analysis concerns the problem of determining “shape invari-
ants” for programs that perform destructive updating on dynamically allocated
storage. This paper presents a new algorithm that takes as input an abstract value
(a 3-valued logical structure describing some set of concrete stores X) and a pre-
condition p, and computes the most-precise abstract value for the stores in X that
satisfy p. This algorithm solves several open problems in shape analysis: (i) com-
puting the most-precise abstract value of a set of concrete stores specified by a
logical formula; (ii) computing best transformers for atomic program statements
and conditions; (iii) computing best transformers for loop-free code fragments
(i.e., blocks of atomic program statements and conditions); (iv) performing inter-
procedural shape analysis using procedure specifications and assume-guarantee
reasoning; and (v) computing the most-precise overapproximation of the meet of
two abstract values.
The algorithm employs a decision procedure for the logic used to express proper-

ties of data structures. A decidable logic for expressing such properties is described
in [5]. The algorithm can also be used with an undecidable logic and a theorem
prover; termination can be assured by using standard techniques (e.g., having the
theorem prover return a safe answer if a time-out threshold is exceeded) at the
cost of losing the ability to guarantee that a most-precise result is obtained. A
prototype has been implemented in TVLA, using the SPASS theorem prover.

1 Introduction

Shape-analysis algorithms (e.g., [11]) are capable of establishing that certain
invariants hold for (imperative) programs that perform destructive updating on
dynamically allocated storage. For example, they have been used to establish
that a program preserves treeness properties, as well as that a program satisfies
certain correctness criteria [8]. The TVLA system [8] automatically constructs
shape-analysis algorithms from a description of the operational semantics of a
given programming language, and the shape abstraction to be used.

The methodology of abstract interpretation has been used to show that the
shape-analysis algorithms generated by TVLA are sound (conservative). Tech-
nically, for a given program, TVLA uses a finite set of abstract values L, which
forms a join semi-lattice, and an adjoined pair of functions (α, γ), which form a
Galois connection [2]. The abstraction function α maps potentially infinite sets
of concrete stores to the most-precise abstract value in L. The concretization
function γ maps an abstract value to the set of concrete stores that the ab-
stract value represents. Thus, soundness means that the set of concrete stores

? Supported by ONR contract N00014-01-1-0796.
?? Supported in part by the THE ISRAEL SCIENCE FOUNDATION (grant No.

304/03)

Sunshine
高亮

γ(a) represented by the abstract values a computed by TVLA includes all of the
stores that could ever arise, but may also include superfluous stores (which may
produce false alarms).

1.1 Main Results

The overall goal of our work is to improve the precision and scalability of TVLA
by employing decision procedures. In [15], we show that the concretization of an
abstract value can be expressed using a logical formula. Specifically, [15] gives
an algorithm that converts an abstract value a into a formula γ̂(a) that exactly
characterizes γ(a)—i.e., the set of concrete stores that a represents.3 This is
used in this paper to develop algorithms for the following operations on shape
abstractions:

– Computing the most-precise abstract value that represents the (potentially
infinite) set of stores defined by a formula. We call this algorithm α̂(ϕ)
because it is a constructive version of the algebraic operation α.

– Computing the operation assume[ϕ](a), which returns the most-precise ab-
straction of the set of stores represented by a for which a precondition ϕ
holds. Thus, when applied to the most general abstract value >, the pro-
cedure ̂assume[ϕ] computes α̂(ϕ). However, when applied to some other
abstract value a, ̂assume[ϕ] refines a according to precondition ϕ. This is
perhaps the most exciting application of the method described in the paper,
because it would permit TVLA to be applied to large programs by using
procedure specifications.

– Computing best abstract transformers for atomic program statements and
conditions [2]. The current transformers in TVLA are conservative, but are
not necessarily the best. Technically, the best abstract transformer of a state-
ment described by a transformer τ amounts to assume[τ](a), where τ is a
formula over the input and output states and a is the input abstract value.
The method can also be used to compute best transformers for loop-free
code fragments (i.e., blocks of atomic program statements and conditions).

– Computing the most-precise overapproximation of the meet of two abstract
values. Such an operation is useful for combining forward and backward
shape analysis to establish temporal properties, and when performing inter-
procedural analysis in the Sharir and Pnueli functional style [12]. Technically,
the meet of abstract values a1 and a2 is computed by α̂(γ̂(a1) ∧ γ̂(a2)).

The assume Operation can be used to perform interprocedural shape analysis
using procedure specifications and assume-guarantee reasoning. Here the prob-
lem is to interpret a procedure’s pre- and post-conditions in the most precise
way (for a given abstraction). For every procedure invocation, we check if the
current abstract value potentially violates the precondition; if it does, a warning
is produced. At the point immediately after the call, we can assume that the
post-condition holds. Similarly, when a procedure is analyzed, the pre-condition

3 As a convention, a name of an operation marked with a “hat” (̂) denotes the
algorithm that computes that operation.

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

is assumed to hold on entry, and at end of the procedure the post-condition is
checked.

The core algorithm ̂assume presented in the paper computes assume[ϕ](a),
the refinement of an abstract value a according to precondition ϕ. In [16] we prove
the correctness of the algorithm, i.e., ̂assume[ϕ](a) = assume[ϕ](a) = α([[ϕ]] ∩
γ(a)). Fig. 1 depicts the idea behind the algorithm. It shows the the concrete and
abstract value-spaces as the rectangle on the left and the oval on the right. The
points in the right oval represent abstract values with the corresponding sets of
concrete values (defined by γ) shown as ovals on the left. The algorithm works its
way down in the right oval, which on the left corresponds to progressing from the
outer oval towards the inner region, labeled X. The algorithm repeatedly refines
abstract value a by eliminating the ability to represent concrete stores that do
not satisfy ϕ. It produces an abstract value that represents the tightest set of
stores in γ(a) that satisfy ϕ. Of course, because of the inherent loss of information
due to abstraction, the result can also describe stores in which ϕ does not hold.
However, the result is as precise as possible for the given abstraction, i.e., it is
the tightest possible overapproximation to [[ϕ]]∩ γ(a) expressible in the abstract
domain.

Fig. 1. The ̂assume[ϕ](a) algorithm. The set X = [[ϕ]] ∩ γ(a) describes all stores that
are represented by a and satisfy ϕ.

The ̂assume algorithm employs a decision procedure for the logic used to
express properties of data structures. In [5], a logic named ∃∀DTC(E) is described,
which is both decidable and useful for reasoning about shape invariants. Its main
features are sketched in Section 3.1. However, the ̂assume algorithm can also
be used with an undecidable logic and a theorem prover; termination can be
assured by using standard techniques (e.g., having the theorem prover return a
safe answer if a time-out threshold is exceeded) at the cost of losing the ability
to guarantee that a most-precise result is obtained.

Prototype Implementation To study the feasibility of our method, we have
implemented a prototype of the ̂assume algorithm using the first-order theorem
prover SPASS [14]. Because SPASS does not support transitive closure, the pro-

totype implementation is applicable to shape-analysis algorithms that do not
use transitive closure [6, 13]. So far, we tried three simple examples: two cases
of ̂assume, one of which is the running example of this paper, and one case of
best transformer. On all queries posed by these examples, the theorem prover
terminated. The number of calls to SPASS in the running example is 158, and
the overall running time was approximately 27 seconds.

2 Overview of the Framework

This section provides an overview of the framework and the results reported in
the paper. The formal description of the ̂assume algorithm appears in Section 3.

As an example, consider the following precondition, expressed in C notation
as: (x -> n == y) && (y != null) (which will be abbreviated in this section
as p), where x and y are program variables of the linked-list data-type defined
in Fig. 2(a). The precondition p can be defined by a closed formula in first-order

logic: ϕ0
def

= ∃v1, v2 : x(v1)∧n(v1, v2)∧y(v2). The operation assume[p](a) enforces
precondition p on an abstract value a. Typically, a represents a set of concrete
stores that may arise at the program point in which p is evaluated. The abstract
value a used in the running example is depicted by the graph in Fig. 2(S). This
graph is an abstraction of all concrete stores that contain a non-empty linked
list pointed to by x, as explained below.

2.1 3-Valued Structures

In this paper, abstract values that are used to represent concrete stores are sets
of 3-valued logical structures over a vocabulary P of predicate symbols. Each
structure has a universe U of individuals and a mapping ι from k-tuples of
individuals in U to values 1, 0, or 1/2 for each k-ary predicate in P. We say that
the values 0 and 1 are definite values and that 1/2 is an indefinite value,
meaning “either 0 or 1 possible”; a value l1 is consistent with l2 (denoted by
l1 v l2) when l1 = l2 or l2 = 1/2;

⊔
W denotes the least upper bound of the

values in the set W .
A 3-valued structure provides a representation of stores: individuals are ab-

stractions of heap-allocated objects; unary predicates represent pointer variables
that point from the stack into the heap; binary predicates represent pointer-
valued fields of data structures; and additional predicates in P describe certain
properties of the heap. A special predicate eq has the intended meaning of equal-
ity between locations. When the value of eq is 1/2 on the pair 〈u, u〉 for some
node u, then u is called a “summary” node and it may represent more than one
linked-list element. Table 1 describes the predicates required for a program with
pointer variables x and y, that manipulates the linked-list data-type defined in
Fig. 2(a). 3-valued structures are depicted as directed graphs, with individuals
as graph nodes. A predicate with value 1 is represented by a solid arrow; with
value 1/2 by a dotted arrow; and with value 0 by the absence of an arrow.

In Fig. 2(S), the solid arrow from x to the node u1 indicates that predicate x
has the value 1 for the individual u1 in the 3-valued structure S. This means that
any concrete store represented by S contains a linked-list element pointed to by
program variable x. Moreover, it must contain additional elements (represented

Predicate Intended Meaning

x(v) Does pointer variable x point to element v?

y(v) Does pointer variable y point to element v?

n(v1, v2) Does the n field of v1 point to v2?

eq(v1, v2) Do v1 and v2 denote the same element?

is(v) Is v pointed to by more than one field ?

Table 1. The set of predicates for representing the stores manipulated by programs
that use the List data-type from Fig. 2(a) and two pointer variables x, y.

by the summary node u2, drawn as a dotted circle), some of which may be
reachable from the head of the linked-list (as indicated by the dotted arrow
from u1 to u2, which corresponds to the value 1/2 of predicate n(u1, u2)), and
some of which may be linked to others (as indicated by the dotted self-arrow
on u2). The dotted arrows from y to u1 and u2 indicate that program variable
y may point to any linked-list element. The absence of an arrow from u2 to
u1 means that there is no n-pointer to the head of the list. Also, the unary
predicate is is 0 on all nodes and thus not shown in the graph, indicating that
every element of a concrete store represented by this structure may be pointed
to by at most one n-field.

/* list.h */

typedef struct node {
struct node *n;

int data;

} *List;

?>=<89:;u1

n // u2

n

��

x

OO

y

OOcc

(a) (S)

?>=<89:;u1

n // ?>=<89:;uy
n // u2

n

��

x

OO

y

OO
?>=<89:;u1

n // ?>=<89:;uy
n // u2

x

OO

y

OO
?>=<89:;u1

n // ?>=<89:;uy
n // ?>=<89:;u2

x

OO

y

OO
?>=<89:;u1

n // ?>=<89:;uy u2

n

��

x

OO

y

OO

(S0) (S1) (S2) (S3)

?>=<89:;u1

n // ?>=<89:;uy u2

x

OO

y

OO
?>=<89:;u1

n // ?>=<89:;uy ?>=<89:;u2

x

OO

y

OO
?>=<89:;u1

n // ?>=<89:;uy ?>=<89:;u2

n

��

x

OO

y

OO
?>=<89:;u1

n// ?>=<89:;uy

x

OO

y

OO

(S4) (S5) (S6) (S7)

Fig. 2. (a) A declaration of a linked-list data-type in C. (S) The input abstract value
a = {S} represents all concrete stores that contain a non-empty linked list pointed to
by the program variable x, where the program variable y may point to some element.
(S0–S7) The result of computing assume[p](a): the abstract value a′ = {S0, . . . , S7}
represents all concrete stores that contain a linked-list of length 2 or more that is
pointed to by x, in which the second element is pointed to by y.

We next introduce the subclass of bounded structures [10]. Towards this end,
we define abstraction predicates to be a designated subset of unary predi-
cates, denoted by A. In the running example, all unary predicates are defined as
abstraction predicates. A bounded structure is a 3-valued structure in which
for every pair of distinct nodes u1, u2, there exists an abstraction predicate q such
that q evaluates to different definite values for u1 and u2. All 3-valued structures
used throughout the paper are bounded structures. Bounded structures are used
in shape analysis to guarantee that the analysis is carried out w.r.t. a finite set
of abstract structures, and hence will always terminate.

2.2 Embedding Order on 3-Valued Structures

3-valued structures are ordered by the embedding order (v), defined below.
S v S′ guarantees that the set of concrete stores represented by S is a subset of
those represented by S′.

Let S and S′ be two 3-valued structures, and let f be a surjective func-
tion that maps nodes of S onto nodes of S′. We say that f embeds S in S′

(denoted by S vf S′) if for every predicate q ∈ P of arity k and all k-tuples
〈u1, . . . , uk〉 in S, the value of q over 〈u1, . . . , uk〉 is consistent with, but may be
more specific than, the value of q over 〈f(u1), . . . , f(uk)〉: ιS(q)(u1, . . . , uk) v
ιS

′

(q)(f(u1), . . . , f(uk)). We say that S can be embedded into S′ (denoted
by S v S′) if there exists a function f such that S vf S

′.
In fact, the requirement of assume[p](a) can be rephrased using embedding:

generate the most-precise abstract value a′ such that all concrete stores that can
be embedded into a′ (i) can be embedded into a, and (ii) satisfy the precondi-
tion p. Indeed, the result of assume[p](a), shown in Fig. 2(S0–S7), consists of 8
structures, each of which can be embedded into the input structure Fig. 2(S).
The embedding function maps u1 in the output structure to the same node u1

in each of S0–S7 output structures. Each one of the output structures S0–S6

contains nodes uy and u2, both of which are mapped by the embedding to u2 in
S; for S7, node uy is mapped to u2 in S. Thus, concrete elements represented by
uy and u2 in the output structures are represented by a single summary node u2

in the input structure. We say that node uy is “materialized” from node u2. As
we shall see, this is the only new node required to guarantee the most-precise
result, relative to the abstraction.

For each of S0, . . . , S7, the embedding function described above is consistent
with the values of the predicates. The value of x on u1 is 1 in Si and S structures.
Indefinite values of predicates in S impose no restriction on the corresponding
values in the output structures. For instance, the value of y is 1/2 on all nodes
in S, which is consistent with its value 0 on nodes u1 and u2 and the value 1
on uy in each of S0, . . . , S7. The absence of an n-edge from u2 back to u1 in
S implies that there must be no edge from uy to u1 and from u2 to u1 in the
output structures, i.e., the values of the predicate n on these pairs must be 0.

2.3 Integrity Rules

A 2-valued structure is a special case of a 3-valued structure, in which predicate
values are only 0 and 1. Because not all 2-valued structures represent valid stores,

Sunshine
高亮

Sunshine
高亮
S is more precise than S'

Sunshine
高亮

Sunshine
高亮

we use a designated set of integrity rules, to exclude impossible stores. The
integrity rules are fixed for each particular analysis and defined by a conjunction
of closed formulas over the vocabulary P, that must be satisfied by all concrete
structures. For the linked-list data-type in Fig. 2(a), the following conditions
define the admissible stores: (i) each program variable can point to at most
one heap node, (ii) the n-field of an element can point to at most one element,
(iii) is(v) holds if and only if there exist two distinct elements with n-fields
pointing to v. Finally, eq is given the interpretation of equality: eq(v1, v2) holds
if and only if v1 and v2 denote the same element.

2.4 Canonical Abstraction

The abstraction we use throughout this paper is canonical abstraction, as
defined in [11]. The surjective function β takes a 2-valued structure and returns
a 3-valued structure with the following properties:

– β maps concrete nodes into abstract nodes according to canonical names
of the nodes, constructed from the values of the abstraction predicates.

– β is a tight embedding [11], i.e., the value of the predicate q on an abstract
node-tuple is 1/2 only when there exist two corresponding concrete node-
tuples with different values.

A 3-valued structure S is an ICA (Image of Canonical Abstraction) if there exists
a 2-valued structure S\ such that S = β(S\). Note that every ICA is a bounded
structure.

For example, all structures in Fig. 2(S0–S7) produced by assume[p](a) oper-
ation are ICAs, whereas the structure in Fig. 2(S) is not an ICA. The structure
in Fig. 2(S1) is a canonical abstraction of the concrete structure in Fig. 3(a) and
also the one in Fig. 3(b).

(a) ?>=<89:;u1

n // ?>=<89:;uy
n //GFED@ABCu1

2
GFED@ABCu2

2

x

OO

y

OO
(b) ?>=<89:;u1

n // ?>=<89:;uy
n //GFED@ABCu1

2
GFED@ABCu2

2
GFED@ABCu3

2
...

x

OO

y

OO

Fig. 3. Concrete stores represented by the structure S1 from Fig. 2. (a) The concrete
nodes u1

2 and u2

2 are mapped to the abstract node u2. (b) The concrete nodes u1

2, u2

2

and u3

2 are mapped to the abstract node u2. More concrete structures can be generated
in the same manner, by adding more isolated nodes that map to the summary node
u2.

The abstraction function α is defined by extending β pointwise, i.e., α(W) =
{β(S\) | S\ ∈ W} where W is a set of 2-valued structures. The concretization
function γ takes a set of 3-valued structures W and returns a potentially infinite
set of 2-valued structures γ(W) where S\ ∈ γ(W) iff S\ satisfies the integrity
rules and there exists S ∈W such that β(S\) v S.

The requirement of assume[p](a) to produce the most-precise abstract value
amounts to producing α(X), where X is the set of concrete structures that
embed into a and satisfy p. Indeed, the result of assume[p](a) in Fig. 2(S0–S7)
satisfies this requirement, because S0–S7 are the canonical abstractions of all
structures in X.

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

Sunshine
高亮

For example, structure S1 from Fig. 2 is a canonical abstraction of each of
the structures in Fig. 3. However, S1 is not a canonical abstraction of S2 from
Fig. 2,4 because the value 1/2 of n for 〈uy, u2〉 requires that a concrete structure
abstracted by S1 have two pairs of nodes with the same canonical names as
〈uy, u2〉 and with different values of n. This requirement does not hold in S2, be-
cause it contains only one pair 〈u1, u2〉 with those canonical names. Without S2,
the result would not include the canonical abstractions of all concrete structures
in X, but it would be semantically equivalent (because S2 can be embedded into
S1). The version of the ̂assume[p](a) algorithm that we describe does include S2

in the output. It is straightforward to generalize the algorithm to produce the
smallest semantically equivalent set of structures.

It is non-trivial to produce the most-precise result for assume[p](a). For in-
stance, in each of S0–S6 there is no back-edge from u2 to uy even though both
nodes embed into the node u2 of the input structure, which has a self-loop with
n evaluating to 1/2. It is a consequence of the integrity rules that no back-edge
can exist from any uj

2 to uy in any concrete structure that satisfies p: precondi-
tion p implies the existence of an n-pointer from u1 to uy, but uy cannot have a
second incoming n-edge (because the value of the predicate is on uy is 0).

Consequently, to determine predicate values in the output structure, each
concrete structure that it represents must be accounted for. Because the num-
ber of such concrete structures is potentially infinite, they cannot be examined
explicitly. The algorithm described in this paper uses a decision procedure to
perform this task symbolically.

Towards this end, the algorithm uses a symbolic representation of concrete
stores as a logical formula, called a characteristic formula. The characteristic
formula for an abstract value a is denoted by γ̂(a); it is satisfied by a 2-valued
structure S\ if and only if S\ ∈ γ(a). The γ̂ formula for shape analysis is defined
in [15] for bounded structures, and it includes the integrity rules.

In addition, a necessary requirement for the output of ̂assume to be a set
of ICAs is imposed by the formula ϕq,u1,...,uk

, defined in Eq. (1) below; this
is used to check whether the value of a predicate q can be 1/2 on a node-
tuple 〈u1, . . . , uk〉 in a structure S. Intuitively, the formula is satisfiable when
there exists a concrete structure represented by S that contains two tuples of
nodes, both mapped to the abstract tuple 〈u1, . . . , uk〉, such that q evaluates to
different values on these tuples. If the formula is not satisfiable, S is not a result
of canonical abstraction, because the value of q on 〈u1, . . . , uk〉 is not as precise
as possible, compared to the value of q on the corresponding concrete nodes.

3 The ̂assume Algorithm

The ̂assume algorithm is shown in Fig. 4. Section 3.1 explains the role of the
decision procedure and the queries posed by our algorithm. The algorithm is ex-
plained in Section 3.2 (phase 1) and Section 3.3 (phase 2). Finally, the properties
of the algorithm are discussed in Section 3.4.

4 S2 is a 2-valued structure, and is a canonical abstraction of itself.

Sunshine
高亮

Sunshine
高亮

procedure ̂assume(ϕ: Formula, a: a set of bounded structures): Set of ICA structures
result := a
// Phase 1
result := bif (ϕ, result)
// Phase 2
while there exists S ∈ result, q ∈ P of arity k, and u1, . . . , uk ∈ US such that

ιS(q)(u1, . . . , uk) = 1/2 and done(S, q, u1, . . . , uk) = false do
done(S, q, u1, . . . , uk) := true
if γ̂(S) ∧ ϕ ∧ ϕq,u1,...,uk

is not satisfiable then result := result \ {S}
S0 := S[q(u1, . . . , uk) 7→ 0]
if γ̂(S0) ∧ ϕ is satisfiable then result := result ∪ {S0}
S1 := S[q(u1, . . . , uk) 7→ 1]
if γ̂(S1) ∧ ϕ is satisfiable then result := result ∪ {S1}

return result

Fig. 4. The ̂assume procedure takes a formula ϕ over the vocabulary P and computes
the set of ICA structures result. γ̂ includes the integrity rules in order to eliminate
infeasible concrete structures. The formula ϕq,u1,...,uk

is defined in Eq. (1). The proce-
dure bif (ϕ,result) is shown in Fig. 5. The flag done(S, q, u1, . . . , uk) marks processed
q-tuples; initially, done is false for all predicate tuples.)

3.1 The Use of the Decision Procedure

The formula ϕq,u1,...,uk
guarantees that a concrete structure must contain two

tuples of nodes, both mapped to the abstract tuple 〈u1, . . . , uk〉, on which q
evaluates to different values. This is captured by the formula

ϕq,u1,...,uk

def

= ∃w1
1, . . . , w

1
k, w

2
1, . . . , w

2
k :

∧k
i=1 nodeS

ui
(w1

i) ∧
∧k

i=1 nodeS
ui

(w2
i)

∧¬
∧k

i=1 eq(w
1
i , w

2
i) ∧ q(w1

1, . . . , w
1
k) ∧ ¬q(w2

1, . . . , w
2
k)

(1)
ϕq,u1,...,uk

uses the node formula, also defined in [15], which uniquely identifies
the mapping of concrete nodes into abstract nodes. For a bounded structure S,
nodeS

u(v) simply asserts that u and v agree on all abstraction predicates.
The function isSatisfiable(ψ) invokes a decision procedure that returns

true when ψ is satisfiable, i.e., the set of 2-valued structures that satisfy ψ
is non-empty. This function guides the refinement of predicate values. In par-
ticular, the satisfiability checks on a formula ψ are used to make the following
decisions:

– Discard a 3-valued structure S that does not represent any concrete store in

X by taking ψ
def

= γ̂(S) ∧ ϕ.
– Materialize a new node from node u w.r.t. the value of q ∈ A in S (phase 1)

by taking ψ
def

= γ̂(S) ∧ ϕ ∧ ϕq,u.
– Retain the indefinite value for predicate q on node-tuple 〈u1, . . . , uk〉 in S

(in phase 2) by taking ψ
def

= γ̂(S) ∧ ϕ ∧ ϕq,u1,...,uk
.

This requires a decision procedure for the logic that expresses ϕ, ϕq,u and γ̂,
including the integrity rules.

A Decidable Logic for Shape Analysis [5] describes the logic ∃∀DTC(E),
defined by formulas of the form ∃v1, . . . , vn∀vn+1, . . . , vm : ϕ(v1, . . . , vm), where

procedure bif (ϕ: Formula, W : Set of bounded structures): Set of bounded structures
for all S ∈ W

if γ̂(S) ∧ ϕ is not satisfiable then W := W \ {S}
while there exists S ∈ W, q ∈ A and u ∈ US such that ιS(q)(u)= 1/2

W := W \ {S}
if γ̂(S) ∧ ϕ ∧ ϕq,u is satisfiable then W := W ∪ S[u 7→ u.0, u.1][q(u.0) 7→ 0, q(u.1) 7→ 1]
S0 := S[q(u) 7→ 0]
if γ̂(S0) ∧ ϕ is satisfiable then W := W ∪ {S0}
S1 := S[q(u) 7→ 1]
if γ̂(S1) ∧ ϕ is satisfiable then W := W ∪ {S1}

return W

Fig. 5. The procedure takes a set of structures and a formula ϕ over the vocabulary
P, and computes the bifurcation of each structure in the input set, w.r.t. the input
formula. Note that at the beginning of the procedure, it ensures that each structure
in the working set W represents at least one concrete structure that satisfies ϕ. The
formula ϕq,u is defined in Eq. (1). The operation S[u 7→ u.0, u.1] performs a bifurcation
of the node u in S, setting the values of all predicates on u.0 and u.1 to the values they
had on u.

ϕ(v1, . . . , vm) is a quantifier-free formula over an arbitrary number of unary
predicates and a single binary predicate E(vi, vj). Instead of general transitive
closure, ∃∀DTC(E) only allows E∗(vi, vj), which denotes the deterministic tran-

sitive closure [4] of E: E-paths that pass through an individual that has two
or more successors are ignored in E∗. In [5], ∃∀DTC(E) is shown to be use-
ful for reasoning about shape invariants of data structures, such as singly and
doubly linked lists, (shared) trees, and graph types [7]. Also, the satisfiability of
∃∀DTC(E) formulas is decidable and NEXPTIME-complete, hence the ∃∀DTC(E)

decision procedure is a candidate implementation for the isSatifiable function. 5

To sidestep the limitations of this logic, [5] introduces the notion of struc-

ture simulation, and shows that structure simulations can often be automatically
maintained for the mutation operations that commonly occur in procedures that
manipulate heap-allocated data structures. The simulation is defined via trans-
lation of FOTC formulas to equivalent ∃∀DTC(E) formulas.

Undecidable Logic The ̂assume algorithm can also be used with an undecid-
able logic and a theorem prover. The termination of the function isSatisfiable
can be assured by using standard techniques (e.g., having the theorem prover
return a safe answer if a time-out threshold is exceeded) at the cost of losing the
ability to guarantee that a most-precise result is obtained.

If the timeout occurs in the first call to a theorem prover made by phase 2,
the structure S is not removed from result. If a timeout occurs in any other
satisfiability call made by bif or by phase 2, the structure examined by this call
is added to the output set. Using this technique, ̂assume always terminates while
producing sound results.

5 Another candidate is the decision procedure for monadic 2-nd order logic over trees
[3], MONA, which has non-elementary complexity.

3.2 Materialization

Phase 1 of the algorithm performs node “materialization” by invoking the pro-
cedure bif. The name bif comes from its main purpose: whenever a structure
has an indefinite value of an abstraction predicate q on some abstract node,
supported by different values on corresponding concrete nodes, the node is bi-

furcated into two nodes and q is set to different definite values on the new nodes.
The bif procedure produces a set of 3-valued structures that have the same set
of canonical names as the concrete stores that satisfy ϕ and embed into a. The
bif procedure first filters out potentially unsatisfiable structures, and then iter-
ates over all structures S ∈ W that have an indefinite value for an abstraction
predicate q ∈ A on some node u. It replaces S by other structures. As a result of
this phase, all abstraction predicates have definite values for all nodes in each of
the structures. Because the output structures are bounded structures, the num-
ber of different structures that can be produced is finite, which guarantees that
bif procedure terminates.

In the body of the loop in bif , we check if there exists a concrete structure
represented by S that satisfies ϕ in which q has different values on concrete nodes
represented by u (the query is performed using the formula ϕq,u). In this case,
a new structure S′ is added to W , created from S by duplicating the node u in
S into two instances and setting the value of q to 0 for one node instance, and
to 1 for another instance. All other predicate values on the new node instances
are the same as their values on u.

In addition, two copies of S are created with 0 and 1, respectively, for the
value of q(u). To guarantee that each copy represents a concrete structure in X
an appropriate query is posed to the decision procedure. Omitting this query
will produce a sound, but potentially overly-conservative result.

Fig. 6 shows a computation tree for the algorithm on the running example.
A node in the tree is labeled by a 3-valued structure, sketched by showing its
nodes. Its children are labeled by the result of refining the 3-valued structure
w.r.t. the predicate and the node-tuple on the right, by the values shown on the
outgoing edges.

The order in which predicate values are examined affects the complexity
(in terms of the number of calls to a decision procedure, the size of the query
formulas in each call and the maximal number of explored structures), but it
does not affect the result, provided that all calls terminate. The order in Fig. 6
was chosen for convenience of presentation. The root of the tree contains the
sketch of the input structure S from Fig. 2(S); u1 is the left circle and u2 is
the right circle. Fig. 6 shows the steps performed by bif on the input {S} in
Fig. 2. bif examines the abstraction predicate y, which has indefinite values on
the nodes u1 and u2. The algorithm attempts to replace S by T ′, T1, and T0,
shown as the children of S in Fig. 6. The structures T ′ and T1 are discarded
because all of the concrete structures they represent violate integrity rule (i) for
x (Section 2.3) and the precondition p, respectively. The remaining structure T0

is further modified w.r.t. the value of y(u2). However, setting y(u2) to 0 results
in a structure that does not satisfy p, and hence it is discarded.

Sunshine
高亮

Fig. 6. A computation tree for ̂assume[p](a) for a shown in Fig. 2(a).

3.3 Refining Predicate Values

The second phase of the ̂assume algorithm refines the structures by lowering
predicate values from 1/2 to 0 and 1, and throwing away structure S when the
structure has a predicate q that has the value 1/2 for some tuple q(u1, . . . , uk),
but the structure does not represent any 2-valued structure with corresponding
tuples q(u′1, . . . , u

′

k) = 0 and q(u′′1 , . . . , u
′′

k) = 1.
For each structure S and an indefinite value of a predicate q ∈ P on a tuple

of abstract nodes, we eliminate structures in which the predicate has the same
values on all corresponding tuples in all concrete structures that are represented
by S and satisfy ϕ. (This query is performed using the formula in Eq. (1).) In
addition, two copies of S are created with the values 0 and 1 for q, respectively.
To guarantee that each copy represents a concrete structure in X, an appropriate
query is posed to a decision procedure. The done flag is used to guarantee that
each predicate tuple is processed only once.

The bulk of Fig. 6 (everything below the top two rows) shows the refinement
of each predicate value in the running example. Phase 2 starts with two struc-
tures, T ′

2 and T ′

3, of size 2 and 3, produced by bif . Consider the refinement of
T ′

2 w.r.t. n(u1, uy), where u1 is pointed to by x and uy is pointed to by y (the
same node names as in Fig. 2).

The predicate tuple n(u1, uy) cannot be set to 1/2, because it requires the
existence of a concrete structure with two different pairs of nodes mapped to
〈u1, uy〉; however, integrity rule (i) in Section 2.3 implies that there is exactly
one node represented by u1 and exactly one node represented by uy. Intuitively,
this stems from the fact that the (one) concrete node represented by u1(uy) is
pointed to by x(y). The predicate tuple n(u1, uy) cannot be set to 0, because
this violates the precondition p, according to which the element pointed to by y

(represented by uy) must also be pointed to by the n-field of the element pointed
to by x (represented by u1). Guided by the computation tree in Fig. 6, the reader
can verify that the structures in Fig. 2(S0–S7) are generated by ̂assume[p](a).
(The final answer is read out at the leaves).

3.4 Properties of the Algorithm

We determine the complexity of the algorithm in terms of (i) the size of each
structure, i.e., the number of nodes and definite values, (ii) the number of struc-
tures, and (iii) the number of the calls to the decision procedure. The size of
each query formula passed to the decision procedure is linear in the size of the
examined structure, because γ̂(S) is linear in S, ϕ is usually small, and the size
of ϕq,u is fixed for a given P. The complexity in terms of (ii) and (iii) is linear in
the height of the abstract domain of sets of ICA structures defined over P, which
is doubly-exponential in the size of P. Nevertheless, it is exponentially more ef-
ficient than the naive enumerate-and-eliminate algorithm over the abstract
domain. The reason is that the algorithm described in this paper examines only
one descending chain in this abstract domain, as shown in Fig. 1.

To prove the correctness of the algorithm, it is sufficient to establish the
following properties (the proofs appear in [16]):

1. All the structures explored by the algorithm are bounded structures.
2. result w α([[ϕ]] ∩ γ(a)). This requirement ensures that the result is sound,

i.e., result contains canonical abstractions of all concrete structures in X.
This is a global invariant throughout the algorithm.

3. result v α([[ϕ]]∩γ(a)). This requirement ensures that result does not contain
abstract structures that are not ICAs of any concrete store in X. This holds
upon the termination of the algorithm.

4 Computing the Best Transformer

The BT algorithm manipulates the two-store vocabulary P ∪P ′, which includes
two copies of each predicate — the original unprimed one, as well as a primed
version of the predicate. The original version of the predicate contains the values
before the transformer is applied, and the primed version contains the new values.

The best-transformer algorithm BT (τ, a) takes a set of bounded structures
a over a vocabulary P, and a transformer formula τ over the two-store vocab-
ulary P ∪ P ′. It returns a set of ICA structures over the two-store vocabulary
that is the canonical abstraction of all pairs of concrete structures 〈S\

1, S
\
2〉 such

that S\
2 is the result of applying the transformer τ to S\

1. BT (τ, a) is computed
by ̂assume(τ, extend(a)) that operates over the two-store vocabulary, where
extend(a) extends each structure in S ∈ a into one over a two-store vocabu-
lary by setting the values of all primed predicates to 1/2.

The two-store vocabulary allows us to maintain the relationship between the
values of the predicates before and after the transformer. Also, τ is an arbitrary
formula over the two-store vocabulary; in particular, it may contain a precon-
dition that involves unprimed versions of the predicates, together with primed
predicates in the “update” part. The result of the transformer can be obtained
from the primed version of the predicates in the output structure.

Sunshine
高亮

5 Related Work and Conclusions

In [9], we have presented a different technique to compute best transformers
in a more general setting of finite-height, but possibly infinite-size lattices. The
technique presented in [9] handles infinite domains by requiring that a decision
procedure produce a concrete counter-example for invalid formulas, which is not
required in the present paper.

Compared to [9], an advantage of the approach taken in the present paper
is that it iterates from above: it always holds a legitimate value (although not
the best). If the logic is undecidable, a timeout can be used to terminate the
computation and return the current value. Because the technique described in
[9] starts from ⊥, an intermediate result cannot be used as a safe approximation
of the desired answer. For this reason, the procedures discussed in [9] must be
based on decision procedures. Another potential advantage of the approach in
this paper is that the size of formulas in the algorithm reported here is linear
in the size of structures (counting 0 and 1 values), and does not depend on the
height of the domain.

This paper is also closely related to past work on predicate abstraction,
which also uses decision procedures to implement most-precise versions of the
basic abstract-interpretation operations. Predicate abstraction is a special case
of canonical abstraction, when only nullary predicates are used. Interestingly,
when applied to a vocabulary with only nullary predicates, the algorithm in
Fig. 4 is similar to the algorithm used in SLAM [1]. It starts with 1/2 for all of
the nullary predicates and then repeatedly refines instances of 1/2 into 0 and 1.
The more general setting of canonical abstraction requires us to use the formula
ϕq,u1,u2,...,uk

to identify the appropriate values of non-nullary predicates. Also,
we need the first phase (procedure bif) to identify what node materializations
need to be carried out.

This paper was inspired by the Focus6 operation in TVLA, which is similar in
spirit to the assume operation. The input of Focus is a set of 3-valued structures
and a formula ϕ. Focus returns a semantically equivalent set of 3-valued struc-
tures in which ϕ evaluates to a definite value, according to the Kleene semantics
for 3-valued logic [11]. The ̂assume algorithm reported in this paper has the
following advantages: (i) it guarantees that the number of resultant structures is
finite. The Focus algorithm in TVLA generates a runtime exception when this
cannot be achieved. This make Focus a partial function, which was sometimes
criticized by the TVLA user community. (ii) The number of structures gener-
ated by ̂assume is optimal in the sense that it never returns a 3-valued structure
unless it is the canonical abstraction of some required store.

The latter property is achieved by using a decision procedure; in the pro-
totype implementation, a theorem prover is used instead, which makes ̂assume

currently slower than Focus. In the future, we plan to develop a specialized de-
cision procedure for the logic ∃∀DTC(E), which we hope will give us the benefits
of ̂assume while maintaining the efficiency of Focus on those formulas for which
Focus is defined.

6 In Russian, Focus means “trick” like “Hocus Pocus”.

Sunshine
高亮

Sunshine
高亮

To summarize, for shape-analysis problems, the methods described in this
paper are more automatic and more precise than the ones used in TVLA, and
allow modular analysis with assume-guarantee reasoning, although they are cur-
rently much slower. This work also provides a nice example of how abstract-
interpretation techniques can exploit decision-procedures/theorem-provers. Meth-
ods to speed up these techniques are the subject of ongoing work.

References

1. T. Ball and S.K. Rajamani. The SLAM toolkit. In Proc. Computer-Aided Verif.,
Lec. Notes in Comp. Sci., pages 260–264, 2001.

2. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Symp. on Princ. of Prog. Lang., pages 269–282, New York, NY, 1979. ACM Press.

3. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-

rithms for the Construction and Analysis of Systems, First International Work-

shop, TACAS ’95, LNCS 1019, 1995.
4. N. Immerman. Descriptive Complexity. Springer-Verlag, 1999.
5. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Decidable logics

for expressing heap connectivity. In preparation, 2003.
6. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-

tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory

and Applications, chapter 4, pages 102–131. Prentice-Hall, Englewood Cliffs, NJ,
1981.

7. N. Klarlund and M. Schwartzbach. Graph types. In Symp. on Princ. of Prog.

Lang., New York, NY, January 1993. ACM Press.
8. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In

Static Analysis Symp., pages 280–301, 2000.
9. T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.

In Proc. VMCAI, 2004. To appear.
10. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.

In Symp. on Princ. of Prog. Lang., pages 105–118, New York, NY, January 1999.
ACM Press.

11. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
Trans. on Prog. Lang. and Syst., 2002.

12. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and

Applications, chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.
13. E. Y.-B. Wang. Analysis of Recursive Types in an Imperative Language. PhD

thesis, Univ. of Calif., Berkeley, CA, 1994.
14. C. Weidenbach. SPASS: An automated theorem prover for first-order logic with

equality. Available at “http://spass.mpi-sb.mpg.de/index.html”.
15. G. Yorsh. Logical characterizations of heap abstractions. Master’s thesis, Tel-Aviv

University, Tel-Aviv, Israel, 2003. Available at “http://www.math.tau.ac.il/∼ gre-
tay”.

16. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise ab-
stract operations for shape analysis. Technical report, TAU, 2003. Available at
“http://www.cs.tau.ac.il/∼gretay”.

